Answers to HMM questions (1), (2) and (3) in question sheet 2.

ASR: Decoding

- Let $X=\left\{x_{1}, \ldots, x_{\mathrm{T}}\right\}$ be a state sequence of length T
- The joint probability of Y and X is given by:

$$
p(Y, X)=b_{x_{1}}\left(y_{1}\right) \prod_{t=2}^{T} a_{x_{t-1} x_{t}} b_{x_{t}}\left(y_{t}\right)
$$

- i.e. the product of the state-output and state transition probabilities along the state sequence
- $p(Y)$ is the sum of $P(Y, X)$ over all sequences X
- $P(Y, \hat{X})$ is the probability of an observation sequence Y and the optimum state sequence \hat{X}

Viterbi Decoding

Viterbi Decoding

- State-time trellis

$$
\alpha_{1}(1)=b_{1}\left(y_{1}\right)=0.6
$$

Viterbi Decoding

Viterbi Decoding

Viterbi Decoding

$\alpha_{2}(3)=\alpha_{1}(1) a_{13} b_{3}\left(y_{2}\right)=0.6^{* 0.33^{*} 0.4=0.072}$

Viterbi Decoding

Viterbi Decoding

Viterbi Decoding

$$
\alpha_{3}(2)=\max \left\{\begin{array}{l}
u_{2}(1) a_{12} b_{2}\left(y_{3}\right)=0.00 .2 * 0.2=2.4^{*} \pi^{-3} \\
\alpha_{2}(2) a_{22} b_{2}\left(y_{3}\right)=0.084^{*} 0.6^{*} 0.2=0.01008
\end{array}\right.
$$

Viterbi Decoding

Viterbi Decoding

$$
\alpha_{3}(3)=\max \begin{cases}\alpha_{2}(1) a_{13} b_{3}\left(y_{3}\right) & =0.00 * 0.3 * 0.2=3.0 * 10^{-3} \\ \alpha_{2}(2) a_{23} b_{3}\left(y_{3}\right) & =0.007 * 0.4 * 0.2=6.72 * 10^{-3} \\ \alpha_{2}(3) a_{33} b_{3}\left(y_{3}\right) & =0.072 * 0.6 * 0.2=8.64 * 10^{-3}\end{cases}
$$

Viterbi Decoding

- Continue in a similar manner
- Final overall probability $\quad P(Y, \hat{X})=\alpha_{7}(4)=1.73 * 10^{-4}$

